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COMMENT 

Fermion determinants and the Berry phase 

J C Martinez 
Mathematics Centre, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 2159 

Received 9 January 1989 

Abstract. Following an observation that certain fermion operators are parametrisable by 
a holonomy variable by which they may be ‘rotated into a ‘free’ Dirac operator, we show 
that their determinants are given by their Berry phases. 

Considerable interest has been focused during the past decade on the role of topological 
reasoning in physics. Investigations on anomalies in theories involving fermions is a 
case in point (Treiman er al 1985). In this respect it has been noted that certain classes 
of fermion operators can be constructed, the determinants of which may be calculated 
through the chiral anomaly (Alvarez 1984, Nepomechie 1985). h e  Wess-Zumino 
topological term arises naturally in this analysis. 

In a parallel development various authors have recently drawn attention to the 
Berry holonomy phase and its connection with anomalies is under active scrutiny 
(Berry 1984, Jackiw 1988, Shapere and Wilczek 1989). Rigorous studies of the 
holonomy phase by Simon (1983) and by Kiritsis (1987) have provided criteria regarding 
the possibility of observing them in specific systems. That the Berry phase is related 
to the Wess-Zumino term has been shown by Niemi and Semenoff (1985,1986). It is 
then interesting to consider whether fermion determinants may also be calculated via 
the Berry phase. A further reason for this is the recent finding that the Berry phase 
emerges from an expansion of the effective action for a spin-; system in an external 
field (Dusedau 1988). 

We show in this comment that the Berry phase may be used for evaluating a class 
of fermion determinants and we apply it to a simple paradigm example. By introducing 
the idea of homotopic paths we find that it is possible to think of ‘rotating’ fermion 
operators into ‘free’ Dirac operators, thereby relating the action to Berry’s phase. 
Homotopic paths and Berry’s phase have been studied before (Nelson and Alvarez- 
GaumC 1985). In our development we will also give an expression for the change in 
the path integral measure brought about by an adiabatic closed-loop excursion of the 
system. Although well known for the Wess-Zumino term (D’Hoker and Farhi 1984, 
Fujikawa 1986) there is probably no explicit statement of it for the Berry phase in the 
manner described herein. 

We start by considering the Berry phase for a system described by the Dirac equation 
for a minimally coupled fermion (in the A’= 0 gauge) 

( id ,  + H)rL(x, t )  = 1 )  (1) 
where the Hamiltonian H is initially time independent. Suppose now that H evolves 
adiabatically so that at each instant thereafter the system remains an eigenstate of the 
instantaneous Dirac operator. If H returns to its original expression in a time interval 
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T, the excursion of the system may be pictured as transport around a closed path in 
a parameter space, which we call R space. As pointed out by Berry (1984) the 
wavefunction of the rth eigenstate acquires in the process a non-integrable phase yr (  T), 

rr( T )  = i JOT d t  ( r, t 1; 1 r, t ) 
aside from the dynamical one. To be specific let us assume that the adiabatic change 
is brought about by a unitary operator U(R( t ) )  which ‘rotates’ the wavefunction $ to 
N, 

where we 
In the 

“ t ) )  = U ( t ) $ ( x )  (3)  

write U ( t )  for U ( R ( t ) )  and suppress time in $(x, t) .  
path integral formation we are interested in the T +  00 limit of 

Under (3) the path measure undergoes the change 

[ W l [ ~ $ + I +  J[DNl[DN+I  ( 5 )  

+ ( x ( t ) )  =C ancpn(x(t)) cClt(x(t)) =c cp,(x(t))bt, ( 6 )  

where J is the Jacobian. Following Fujikawa (1986) we expand $ and t,bt as 

n n 

where a, and b: are Grassmann numbers. The eigenfunctions cpn satisfy 

t )  q n  (x( t ) )  = A n  ( t)Pn (x( t ) )  (7) 

with fi= UtHU.  

to 
By expressing the path measure in the form IIm,n dbk da, we find that (3) leads us 

where b;  and a;  are the expansion coefficients for N t  and N and e,, = (cp,, U, cp,). 
The determinant is dealt with by introducing (Gamboa-Saravi et a1 1981) 

d 1 
-lnB(O, t )=- lndet  B( t ,  a t ) .  
dt  S t  

From the expansion 

we have 
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where we put U = ea'= ( T  are generators). The right-hand side is unity. Going back 
to the determinant for c,, 

det(cmn) =det (~(x(o) ) l  U(T)qc(x ,  (0))) 

det(cmn) = lim n (CP ( ~ ( 2 ,  ) ) I  cp(x(tm+l))) (11) 

with R( T )  = R(O), we subdivide the time interval T into smaller segments and write 
N 

N+cc , = I  

with t l  = 0 and f N  = T. With the approximation 

we have finally 

det( c,,,) = e-i' 

where 

is just the Berry phase (Kuratsuji and Iida 1985). Thus the Jacobian is 

(15) 

'14, 4'9 H T ( t ) l = T r  $ ' i ( a , + H T ( f ) ) +  (16) 

Hdiag= ~ 3 ( t ) ~ ( t )  UT(?)* (17) 

J = e-zir. 

Our next task is the evaluation of (4). Suppose that we can write the action 

(integration implied) in such a way that H is diagonalised by a unitary matrix U T ( ? ) ,  

In the above we have introduced two variables: t is time and T (0 s T S v )  is a homotopy 
variable which parametrises the choice of closed path followed in the adiabatic 
evolution of H. In line with (3) we define the wavefunction 4 

+=  (18) 
We may arrange H such that when T = 0, U,( t )  = identity and Hdiag is a constant matrix. 
Referring to this as the free Dirac problem, Z[+, ++, H,(t)] is then the free Dirac 
action. We now compare the change in the action when two homotopic paths labelled 
by T and T - ST are traversed. A quick calculation shows that 

I[$, $', HA?)] = I [ + ' ,  +'+, H,-a.i(t)I + SY (19) 

+' = Ur-~r(t)4 (20) 

where 

and Sy is the change in the Berry phase as one traverses the loops T and 7 - ST. The 
fermion determinant 

together with (15) lead us to 
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This result may be compared with that of Nepomechie (1985). From our discussion 
we see that 7 may be considered as a variable describing the ‘rotation’ of H from Hdiag 
to some general matrix. Properties of ( 2 2 )  will be presented in a future work; an 
application to a simple model will be useful in exposing its utility. 

We consider the model of Gozzi and Thacker (1987): 

They have diagonalised the matrix 6 and found 

&ag= ( -iB iB) = uS,16u7=, 

B = (BkBk)’”, where we assume that the configuration of (23) for corresponds to 
7 =  1 and Bdiag to ~ = 0 .  The matrix U is given in Gozzi and Thacker (1987). The 
corresponding wavefunctions 4 of (18) are just their normal coordinates, namely 

41 =constant 4 * a  eiB’ d 3 a  e-’B’. 

Berry’s phase is found from (21, i.e. the expectation of u’U = &Ut(dU/dBk). One 
has that the non-vanishing results are 6y = *i 6 cos 8, the plus sign being for & and 
minus for d2. (Here 8, 4 are the polar angles in B space.) Then from ( 2 2 )  if we 
assume, as a first approximation, that 67 = de, we have 6r = 6R (R =solid angle) which 
is the first-order result of Dusedau (1988). The determinant will be exp[*i( B + R)] in 
this approximation. 
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